Copied to
clipboard

G = C3×C22.SD16order 192 = 26·3

Direct product of C3 and C22.SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C22.SD16, C4⋊C41C12, (C6×D4)⋊3C4, C6.22C4≀C2, (C2×D4)⋊1C12, C22⋊C82C6, (C2×C6).24D8, C4⋊D4.1C6, C22.2(C3×D8), (C2×C12).443D4, (C2×C6).35SD16, C23.34(C3×D4), C6.29(C23⋊C4), C2.C429C6, (C22×C6).149D4, C6.33(D4⋊C4), C22.7(C3×SD16), (C22×C12).384C22, (C3×C4⋊C4)⋊3C4, C2.4(C3×C4≀C2), (C3×C22⋊C8)⋊4C2, (C2×C4).7(C2×C12), (C2×C4).95(C3×D4), C2.4(C3×C23⋊C4), C2.3(C3×D4⋊C4), (C2×C12).174(C2×C4), (C3×C4⋊D4).11C2, (C22×C4).19(C2×C6), C22.35(C3×C22⋊C4), (C2×C6).122(C22⋊C4), (C3×C2.C42)⋊22C2, SmallGroup(192,133)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C22.SD16
C1C2C22C23C22×C4C22×C12C3×C2.C42 — C3×C22.SD16
C1C22C2×C4 — C3×C22.SD16
C1C2×C6C22×C12 — C3×C22.SD16

Generators and relations for C3×C22.SD16
 G = < a,b,c,d,e | a3=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=bcd3 >

Subgroups: 210 in 90 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, C23, C23, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C2.C42, C22⋊C8, C4⋊D4, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C22×C12, C22×C12, C6×D4, C6×D4, C22.SD16, C3×C2.C42, C3×C22⋊C8, C3×C4⋊D4, C3×C22.SD16
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, D8, SD16, C2×C12, C3×D4, C23⋊C4, D4⋊C4, C4≀C2, C3×C22⋊C4, C3×D8, C3×SD16, C22.SD16, C3×C23⋊C4, C3×D4⋊C4, C3×C4≀C2, C3×C22.SD16

Smallest permutation representation of C3×C22.SD16
On 48 points
Generators in S48
(1 26 41)(2 27 42)(3 28 43)(4 29 44)(5 30 45)(6 31 46)(7 32 47)(8 25 48)(9 17 40)(10 18 33)(11 19 34)(12 20 35)(13 21 36)(14 22 37)(15 23 38)(16 24 39)
(1 5)(2 11)(3 7)(4 13)(6 15)(8 9)(10 14)(12 16)(17 25)(18 22)(19 27)(20 24)(21 29)(23 31)(26 30)(28 32)(33 37)(34 42)(35 39)(36 44)(38 46)(40 48)(41 45)(43 47)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 2)(3 13)(4 12)(5 6)(7 9)(8 16)(10 11)(14 15)(17 32)(18 19)(20 29)(21 28)(22 23)(24 25)(26 27)(30 31)(33 34)(35 44)(36 43)(37 38)(39 48)(40 47)(41 42)(45 46)

G:=sub<Sym(48)| (1,26,41)(2,27,42)(3,28,43)(4,29,44)(5,30,45)(6,31,46)(7,32,47)(8,25,48)(9,17,40)(10,18,33)(11,19,34)(12,20,35)(13,21,36)(14,22,37)(15,23,38)(16,24,39), (1,5)(2,11)(3,7)(4,13)(6,15)(8,9)(10,14)(12,16)(17,25)(18,22)(19,27)(20,24)(21,29)(23,31)(26,30)(28,32)(33,37)(34,42)(35,39)(36,44)(38,46)(40,48)(41,45)(43,47), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,2)(3,13)(4,12)(5,6)(7,9)(8,16)(10,11)(14,15)(17,32)(18,19)(20,29)(21,28)(22,23)(24,25)(26,27)(30,31)(33,34)(35,44)(36,43)(37,38)(39,48)(40,47)(41,42)(45,46)>;

G:=Group( (1,26,41)(2,27,42)(3,28,43)(4,29,44)(5,30,45)(6,31,46)(7,32,47)(8,25,48)(9,17,40)(10,18,33)(11,19,34)(12,20,35)(13,21,36)(14,22,37)(15,23,38)(16,24,39), (1,5)(2,11)(3,7)(4,13)(6,15)(8,9)(10,14)(12,16)(17,25)(18,22)(19,27)(20,24)(21,29)(23,31)(26,30)(28,32)(33,37)(34,42)(35,39)(36,44)(38,46)(40,48)(41,45)(43,47), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,2)(3,13)(4,12)(5,6)(7,9)(8,16)(10,11)(14,15)(17,32)(18,19)(20,29)(21,28)(22,23)(24,25)(26,27)(30,31)(33,34)(35,44)(36,43)(37,38)(39,48)(40,47)(41,42)(45,46) );

G=PermutationGroup([[(1,26,41),(2,27,42),(3,28,43),(4,29,44),(5,30,45),(6,31,46),(7,32,47),(8,25,48),(9,17,40),(10,18,33),(11,19,34),(12,20,35),(13,21,36),(14,22,37),(15,23,38),(16,24,39)], [(1,5),(2,11),(3,7),(4,13),(6,15),(8,9),(10,14),(12,16),(17,25),(18,22),(19,27),(20,24),(21,29),(23,31),(26,30),(28,32),(33,37),(34,42),(35,39),(36,44),(38,46),(40,48),(41,45),(43,47)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,2),(3,13),(4,12),(5,6),(7,9),(8,16),(10,11),(14,15),(17,32),(18,19),(20,29),(21,28),(22,23),(24,25),(26,27),(30,31),(33,34),(35,44),(36,43),(37,38),(39,48),(40,47),(41,42),(45,46)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C···4G4H6A···6F6G6H6I6J6K6L8A8B8C8D12A12B12C12D12E···12N12O12P24A···24H
order122222233444···446···666666688881212121212···12121224···24
size111122811224···481···1222288444422224···4884···4

57 irreducible representations

dim111111111111222222222244
type++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4D8SD16C3×D4C3×D4C4≀C2C3×D8C3×SD16C3×C4≀C2C23⋊C4C3×C23⋊C4
kernelC3×C22.SD16C3×C2.C42C3×C22⋊C8C3×C4⋊D4C22.SD16C3×C4⋊C4C6×D4C2.C42C22⋊C8C4⋊D4C4⋊C4C2×D4C2×C12C22×C6C2×C6C2×C6C2×C4C23C6C22C22C2C6C2
# reps111122222244112222444812

Matrix representation of C3×C22.SD16 in GL4(𝔽73) generated by

64000
06400
00640
00064
,
72000
07200
00720
00441
,
1000
0100
00720
00072
,
571600
575700
006346
00010
,
575700
571600
005172
004522
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[72,0,0,0,0,72,0,0,0,0,72,44,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[57,57,0,0,16,57,0,0,0,0,63,0,0,0,46,10],[57,57,0,0,57,16,0,0,0,0,51,45,0,0,72,22] >;

C3×C22.SD16 in GAP, Magma, Sage, TeX

C_3\times C_2^2.{\rm SD}_{16}
% in TeX

G:=Group("C3xC2^2.SD16");
// GroupNames label

G:=SmallGroup(192,133);
// by ID

G=gap.SmallGroup(192,133);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,1522,248,2951]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^3>;
// generators/relations

׿
×
𝔽