direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×C22.SD16, C4⋊C4⋊1C12, (C6×D4)⋊3C4, C6.22C4≀C2, (C2×D4)⋊1C12, C22⋊C8⋊2C6, (C2×C6).24D8, C4⋊D4.1C6, C22.2(C3×D8), (C2×C12).443D4, (C2×C6).35SD16, C23.34(C3×D4), C6.29(C23⋊C4), C2.C42⋊9C6, (C22×C6).149D4, C6.33(D4⋊C4), C22.7(C3×SD16), (C22×C12).384C22, (C3×C4⋊C4)⋊3C4, C2.4(C3×C4≀C2), (C3×C22⋊C8)⋊4C2, (C2×C4).7(C2×C12), (C2×C4).95(C3×D4), C2.4(C3×C23⋊C4), C2.3(C3×D4⋊C4), (C2×C12).174(C2×C4), (C3×C4⋊D4).11C2, (C22×C4).19(C2×C6), C22.35(C3×C22⋊C4), (C2×C6).122(C22⋊C4), (C3×C2.C42)⋊22C2, SmallGroup(192,133)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C22.SD16
G = < a,b,c,d,e | a3=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=bcd3 >
Subgroups: 210 in 90 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, C23, C23, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C2.C42, C22⋊C8, C4⋊D4, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C22×C12, C22×C12, C6×D4, C6×D4, C22.SD16, C3×C2.C42, C3×C22⋊C8, C3×C4⋊D4, C3×C22.SD16
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, D8, SD16, C2×C12, C3×D4, C23⋊C4, D4⋊C4, C4≀C2, C3×C22⋊C4, C3×D8, C3×SD16, C22.SD16, C3×C23⋊C4, C3×D4⋊C4, C3×C4≀C2, C3×C22.SD16
(1 26 41)(2 27 42)(3 28 43)(4 29 44)(5 30 45)(6 31 46)(7 32 47)(8 25 48)(9 17 40)(10 18 33)(11 19 34)(12 20 35)(13 21 36)(14 22 37)(15 23 38)(16 24 39)
(1 5)(2 11)(3 7)(4 13)(6 15)(8 9)(10 14)(12 16)(17 25)(18 22)(19 27)(20 24)(21 29)(23 31)(26 30)(28 32)(33 37)(34 42)(35 39)(36 44)(38 46)(40 48)(41 45)(43 47)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 2)(3 13)(4 12)(5 6)(7 9)(8 16)(10 11)(14 15)(17 32)(18 19)(20 29)(21 28)(22 23)(24 25)(26 27)(30 31)(33 34)(35 44)(36 43)(37 38)(39 48)(40 47)(41 42)(45 46)
G:=sub<Sym(48)| (1,26,41)(2,27,42)(3,28,43)(4,29,44)(5,30,45)(6,31,46)(7,32,47)(8,25,48)(9,17,40)(10,18,33)(11,19,34)(12,20,35)(13,21,36)(14,22,37)(15,23,38)(16,24,39), (1,5)(2,11)(3,7)(4,13)(6,15)(8,9)(10,14)(12,16)(17,25)(18,22)(19,27)(20,24)(21,29)(23,31)(26,30)(28,32)(33,37)(34,42)(35,39)(36,44)(38,46)(40,48)(41,45)(43,47), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,2)(3,13)(4,12)(5,6)(7,9)(8,16)(10,11)(14,15)(17,32)(18,19)(20,29)(21,28)(22,23)(24,25)(26,27)(30,31)(33,34)(35,44)(36,43)(37,38)(39,48)(40,47)(41,42)(45,46)>;
G:=Group( (1,26,41)(2,27,42)(3,28,43)(4,29,44)(5,30,45)(6,31,46)(7,32,47)(8,25,48)(9,17,40)(10,18,33)(11,19,34)(12,20,35)(13,21,36)(14,22,37)(15,23,38)(16,24,39), (1,5)(2,11)(3,7)(4,13)(6,15)(8,9)(10,14)(12,16)(17,25)(18,22)(19,27)(20,24)(21,29)(23,31)(26,30)(28,32)(33,37)(34,42)(35,39)(36,44)(38,46)(40,48)(41,45)(43,47), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,2)(3,13)(4,12)(5,6)(7,9)(8,16)(10,11)(14,15)(17,32)(18,19)(20,29)(21,28)(22,23)(24,25)(26,27)(30,31)(33,34)(35,44)(36,43)(37,38)(39,48)(40,47)(41,42)(45,46) );
G=PermutationGroup([[(1,26,41),(2,27,42),(3,28,43),(4,29,44),(5,30,45),(6,31,46),(7,32,47),(8,25,48),(9,17,40),(10,18,33),(11,19,34),(12,20,35),(13,21,36),(14,22,37),(15,23,38),(16,24,39)], [(1,5),(2,11),(3,7),(4,13),(6,15),(8,9),(10,14),(12,16),(17,25),(18,22),(19,27),(20,24),(21,29),(23,31),(26,30),(28,32),(33,37),(34,42),(35,39),(36,44),(38,46),(40,48),(41,45),(43,47)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,2),(3,13),(4,12),(5,6),(7,9),(8,16),(10,11),(14,15),(17,32),(18,19),(20,29),(21,28),(22,23),(24,25),(26,27),(30,31),(33,34),(35,44),(36,43),(37,38),(39,48),(40,47),(41,42),(45,46)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 4A | 4B | 4C | ··· | 4G | 4H | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12N | 12O | 12P | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | ··· | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 8 | 8 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 4 | ··· | 4 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | D4 | D4 | D8 | SD16 | C3×D4 | C3×D4 | C4≀C2 | C3×D8 | C3×SD16 | C3×C4≀C2 | C23⋊C4 | C3×C23⋊C4 |
kernel | C3×C22.SD16 | C3×C2.C42 | C3×C22⋊C8 | C3×C4⋊D4 | C22.SD16 | C3×C4⋊C4 | C6×D4 | C2.C42 | C22⋊C8 | C4⋊D4 | C4⋊C4 | C2×D4 | C2×C12 | C22×C6 | C2×C6 | C2×C6 | C2×C4 | C23 | C6 | C22 | C22 | C2 | C6 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 1 | 2 |
Matrix representation of C3×C22.SD16 ►in GL4(𝔽73) generated by
64 | 0 | 0 | 0 |
0 | 64 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 64 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 44 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
57 | 16 | 0 | 0 |
57 | 57 | 0 | 0 |
0 | 0 | 63 | 46 |
0 | 0 | 0 | 10 |
57 | 57 | 0 | 0 |
57 | 16 | 0 | 0 |
0 | 0 | 51 | 72 |
0 | 0 | 45 | 22 |
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[72,0,0,0,0,72,0,0,0,0,72,44,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[57,57,0,0,16,57,0,0,0,0,63,0,0,0,46,10],[57,57,0,0,57,16,0,0,0,0,51,45,0,0,72,22] >;
C3×C22.SD16 in GAP, Magma, Sage, TeX
C_3\times C_2^2.{\rm SD}_{16}
% in TeX
G:=Group("C3xC2^2.SD16");
// GroupNames label
G:=SmallGroup(192,133);
// by ID
G=gap.SmallGroup(192,133);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,1522,248,2951]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^3>;
// generators/relations